Conceitos de probabilidade
A ideia geral da probabilidade é frequentemente dividida em dois conceitos relacionados:
Conceitos de probabilidade
A ideia geral da probabilidade é frequentemente dividida em dois conceitos relacionados:
• Probabilidade de frequência ou probabilidade aleatória, que representa uma série de eventos futuros cuja ocorrência é definida por alguns fenômenos físicos aleatórios. Este conceito pode ser dividido em fenômenos físicos que são previsíveis através de informação suficiente e fenômenos que são essencialmente imprevisíveis. Um exemplo para o primeiro tipo é uma roleta, e um exemplo para o segundo tipo é um decaimento radioativo.
• Probabilidade epistemológica ou probabilidade Bayesiana, que representa nossas incertezas sobre proposições quando não se tem conhecimento completo das circunstâncias causativas. Tais proposições podem ser sobre eventos passados ou futuros, mas não precisam ser. Alguns exemplos de probabilidade epistemológica são designar uma probabilidade à proposição de que uma lei da Física proposta seja verdadeira, e determinar o quão "provável" é que um suspeito cometeu um crime, baseado nas provas apresentadas.
É uma questão aberta se a probabilidade aleatória é redutível à probabilidade epistemológica baseado na nossa inabilidade de predizer com precisão cada força que poderia afetar o rolar de um dado, ou se tais incertezas existem na natureza da própria realidade, particularmente em fenômenos quânticos governados pelo princípio da incerteza de Heisenberg. Embora as mesmas regras matemáticas se apliquem não importando qual interpretação seja escolhida, a escolha tem grandes implicações pelo modo em que a probabilidade é usada para modelar o mundo real.
Representação e interpretação de valores de probabilidade
A probabilidade de um evento geralmente é representada como um número real entre 0 e 1. um evento impossível tem uma probabilidade de exatamente 0, e um evento certo de acontecer tem uma probabilidade de 1, mas a recíproca não é sempre verdadeira: eventos de probabilidade 0 não são sempre impossíveis, nem os de probabilidade 1 certos. A distinção bastante sutil entre "evento certo" e "probabilidade 1" é tratado em maior detalhe no artigo sobre "quase-verdade".
A maior parte das probabilidades que ocorrem na prática são números entre 0 e 1, que indica a posição do evento no contínuo entre impossibilidade e certeza. Quanto mais próxima de 1 seja a probabilidade de um evento, mais provável é que o evento ocorra. Por exemplo, se dois eventos forem ditos igualmente prováveis, como por exemplo em um jogo de cara ou coroa, podemos exprimir a probabilidade de cada evento - cara ou coroa - como "1 em 2", ou, de forma equivalente, "50%", ou ainda "1/2".
Probabilidades também podem ser expressas como chances (odds). Chance é a razão entre a probabilidade de um evento e à probabilidade de todos os demais eventos. A chance de obtermos cara, ao lançarmos uma moeda, é dada por (1/2)/(1 - 1/2), que é igual a 1/1. Isto é expresso como uma "chance de 1 para 1" e é frequentemente escrito como "1:1". Assim, a chance a:b para um certo evento é equivalente à probabilidade a/(a+b).
Por exemplo, a chance 1:1 é equivalente à probabilidade 1/2 e 3:2 é equivalente à probabilidade 3/5.
Ainda fica a questão de a quê exatamente pode ser atribuído uma probabilidade, e como os números atribuídos podem ser usados; isto é uma questão de interpretação de probabilidade.
Há alguns que alegam que pode-se atribuir uma probabilidade a qualquer tipo de proposição lógica incerta; esta é a interpretação bayesiana. Há outros que argumentam que a probabilidade só é aplicada apropriadamente a proposições que relacionam-se com sequências de experimentos repetidos, ou da amostragem de uma população grande; esta é a interpretação frequentista. Há ainda diversas outras interpretações que são variações de um ou de outro tipo.
Distribuições
A distribuição probabilidade é uma função que determina probabilidades para eventos ou proposições. Para qualquer conjunto de eventos ou proposições existem muitas maneiras de determinar probabilidades, de forma que a escolha de uma ou outra distribuição é equivalente a criar diferentes hipóteses sobre os eventos ou proposições em questão.
Há várias formas equivalentes de se especificar uma distribuição de probabilidade. Talvez a mais comum é especificar uma função densidade da probabilidade. Daí, a probabilidade de um evento ou proposição é obtida pela integração da função densidade.
A função distribuição pode ser também especificada diretamente. Em uma dimensão, a função distribuição é chamada de função distribuição cumulativa. As distribuições de probabilidade também podem ser especificadas via momentos ou por funções características, ou por outras formas.
Uma distribuição é chamada de distribuição discreta se for definida em um conjunto contável e discreto, tal como o subconjunto dos números inteiros; ou é chamada de distribuição contínua se tiver uma função distribuição contínua, tal como uma função polinomial ou exponencial. A maior parte das distribuições de importância prática são ou discretas ou contínuas, porém há exemplos de distribuições que não são de nenhum desses tipos.
Dentre as distribuições discretas importantes, pode-se citar a distribuição uniforme discreta, a distribuição de Poisson, a distribuição binomial, a distribuição binomial negativa e a distribuição de Maxwell-Boltzmann. Dentre as distribuições contínuas, a distribuição normal, a distribuição gama, a distribuição t de Student e a distribuição exponencial.
Nenhum comentário:
Postar um comentário