A Geometria espacial (euclidiana)
funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos
apropriados para o estudo de objetos espaciais assim como a relação entre esses
elementos. Os objetos primitivos do ponto de vista espacial, são: pontos,
retas, segmentos de retas, planos, curvas, ângulos e superfícies. Os principais
tipos de cálculos que podemos realizar são: comprimentos de curvas, áreas de
superfícies e volumes de regiões sólidas. Tomaremos ponto, reta e
plano como conceitos primitivos, os quais serão aceitos sem definição.
Planos e Retas
Um plano é um subconjunto do espaço R3
de tal modo que quaisquer dois pontos desse conjunto, podem ser ligados por um
segmento de reta inteiramente contido no conjunto.
Duas retas (segmentos de reta) no
espaço R3 podem ser: paralelas, concorrentes ou reversas.
Retas paralelas: Duas retas são
paralelas se elas não possuem interseção e estão em um mesmo plano.
Retas concorrentes: Duas retas são
concorrentes se elas têm um ponto em comum. As retas perpendiculares são retas
concorrentes que formam entre si um ângulo reto.
Retas reversas: Duas retas são ditas
reversas quando uma não tem interseção com a outra e elas não são paralelas.
Isto significa que elas estão em planos diferentes. Pode-se pensar de uma reta r
desenhada no chão de uma casa e uma reta s, não paralela a r,
desenhada no teto dessa mesma casa.
Posições de pontos, retos e planos
Um plano no espaço R3
pode ser determinado por qualquer uma das situações:
1.
Três pontos não colineares (não pertencentes à mesma reta).
2.
Um ponto e uma reta ou um segmento de reta que não contém o ponto.
3.
Um ponto e um segmento de reta que não contém o ponto.
4.
Duas retas paralelas que não se sobrepõe.
5.
Dois segmentos de reta paralelos que não se sobrepõe.
6.
Duas retas concorrentes.
7.
Dois segmentos de reta concorrentes.
Posições de retas e planos
Há duas relações importantes,
relacionando uma reta e um plano no espaço R3.
Reta paralela a um plano: Uma reta r é
paralela a um plano no espaço R3, se existe uma reta s
inteiramente contida no plano que é paralela à reta dada.
Reta perpendicular a um plano: Uma reta é
perpendicular a um plano no espaço R3, se ela intersecta o
plano em um ponto P e todo segmento de reta contido no plano que tem P como uma
de suas extremidades é perpendicular à reta.
Distância de um ponto a um plano
Seja P um ponto localizado fora de um
plano. A distância do ponto ao plano é a medida do segmento de reta
perpendicular ao plano em que uma extremidade é o ponto P e a outra extremidade
é o ponto que é a interseção entre o plano e o segmento.
Se o ponto P estiver no plano, a
distância é nula.
Posições entre planos
1.
Planos
concorrentes no espaço R3 são planos cuja interseção é uma reta.
2.
Planos
paralelos no espaço R3 são planos que não tem interseção.
3.
Diedro: Quando dois planos
são concorrentes, dizemos que tais planos formam um diedro.
4.
Ângulo
diedral: É ângulo formado por dois planos concorrentes. Para obter o ângulo
diedral, basta tomar o ângulo formado por quaisquer duas retas perpendiculares
aos planos concorrentes.
5.
Planos
normais são aqueles cujo ângulo diedral é um ângulo reto (90 graus).
Nenhum comentário:
Postar um comentário