sexta-feira, 14 de dezembro de 2012

Número Complexos

 O fato de um número negativo não ter  raiz quadrada parece ter sido sempre claro para os matemáticos que se depararam com esta questão, até a concepção do modelo dos números complexos. Um número complexo é um número z que pode ser escrito na forma z = x + iy, em que x e y são números reais e i denota a  unidade imaginária. Esta tem a propriedade i^2 = -1, sendo que x e y são chamados respectivamente parte real e parte imaginária de z.
 O conjunto dos números complexos, denotado por \mathbb{C}, contém o conjunto dos  números reais. Munido de operações de adição e multiplicação obtidas por extensão das operações de mesma denominação nos números reais, adquire uma estrutura álgebra denominada  corpo algebricamente fechado, sendo que esse fechamento consiste na propriedade que tem o conjunto de possuir todas as soluções de qualquer equação polinomial com coeficientes naquele mesmo conjunto (no caso, o conjunto dos complexos). O conjunto dos números complexos também pode ser entendido por seu isomorfismo com um espaço vetorial sobre \mathbb{R}, o conjunto dos reais.
Além disso, a cada número complexo podemos atribuir um número real positivo chamado módulo, dado por:
|z| = \sqrt{x^2 + y^2}.



Geometria Plana



Cálculo de Áreas


Conhecer sobre área é conhecer sobre o espaço que podemos preencher em regiões poligonais convexas – qualquer segmento de reta com extremidades na região só terá pontos pertencentes a esta.
O cálculo de áreas tem muita aplicabilidade em diferentes momentos, seja em atividades puramente cognitivas, ou até mesmo trabalhistas. Um exemplo de profissional que faz uso dessa ferramenta para tornar possível o desempenho do seu trabalho é o pedreiro. É através do conhecimento de área que é possível estimar a quantidade de cerâmica necessária para pavimentar um determinado cômodo de uma casa, por exemplo.

O quadrado


O quadrado é uma figura geométrica plana regular em que todos os seus lados e ângulos são iguais. Veja um exemplo de quadrado na figura a seguir:
Para calcular a área de um quadrado basta que se multipliquem dois dos seus lados l entre si.
Exemplo 1Para pavimentar a sala de sua casa D. Carmem comprou 26 m2 de piso. Sabendo que a sala tem o formato quadrangular e que um dos lados mede 5 m, diga se o piso comprado por D. Carmem será suficiente para pavimentar a sua sala.
  • A sala tem o formato quadrangular;
  • O seu lado mede 5 m;
  • A área do quadrado é A = l 2.
Com base nos dados acima temos:
Conclui-se então que o piso comprado por D. Carmem será suficiente para pavimentar sua sala e ainda sobrará 1 m2.
Lembrete: a unidade de medida de área mais utilizada é o metro quadrado (m2), porém em alguns casos usa-se o km2, cm2, etc.

O retângulo


O retângulo é uma figura geométrica plana cujos lados opostos são paralelos e iguais e todos os ângulos medem 90º. Confiram o retângulo abaixo:

Para calcular a área do retângulo, basta que se multipliquem seu comprimento c pela largura l.
Exemplo 2
Num campeonato de futebol a equipe organizadora do evento está providenciando o gramado que será plantado em toda área do campo. Para comprar as gramas, a equipe precisa saber a área do campo, pois a grama é vendida por metro quadrado. Sabendo que o campo tem 115 m de comprimento por 75 m de largura e ainda que o campo tem o formato retangular, ajude a equipe a solucionar o problema, diga quantos metros quadrados de área tem o campo de futebol?

O triângulo


O triângulo é uma figura geométrica plana formada por três lados e três ângulos. A soma dos seus ângulos internos é igual 180º.
Para calcular a área do triângulo multiplica-se a base b pela altura h e divide o resultado por 2 (metade da área do retângulo).

Exemplo 3
Encontre a área de um triângulo cuja base mede 8,2 cm e a altura 3,6 cm.

O trapézio


O trapézio é uma figura plana com um par de lados paralelos (bases) e um par de lados concorrentes.
Para calcular a área do trapézio adiciona-se a base maior à base menor a, ao resultado da soma multiplica-se a altura, e por fim, divide-se o resultado final por 2.
Exemplo 4
Um fazendeiro quer saber a área de um lote de terra que acabara de comprar. O lote tem o formato de um trapézio. Sabendo que a frente mede 1020 m, o fundo, 815 m e a distância da frente ao fundo é de 510 m. Determine a área do lote.




Geometria Espacial




 A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo de objetos espaciais assim como a relação entre esses elementos. Os objetos primitivos do ponto de vista espacial, são: pontos, retas, segmentos de retas, planos, curvas, ângulos e superfícies. Os principais tipos de cálculos que podemos realizar são: comprimentos de curvas, áreas de superfícies e volumes de regiões sólidas. Tomaremos ponto, reta e plano como conceitos primitivos, os quais serão aceitos sem definição.



Planos e Retas

 Um plano é um subconjunto do espaço R3 de tal modo que quaisquer dois pontos desse conjunto, podem ser ligados por um segmento de reta inteiramente contido no conjunto.
Duas retas (segmentos de reta) no espaço R3 podem ser: paralelas, concorrentes ou reversas.

Retas paralelas: Duas retas são paralelas se elas não possuem interseção e estão em um mesmo plano.



Retas concorrentes: Duas retas são concorrentes se elas têm um ponto em comum. As retas perpendiculares são retas concorrentes que formam entre si um ângulo reto.



Retas reversas: Duas retas são ditas reversas quando uma não tem interseção com a outra e elas não são paralelas. Isto significa que elas estão em planos diferentes. Pode-se pensar de uma reta r desenhada no chão de uma casa e uma reta s, não paralela a r, desenhada no teto dessa mesma casa.



Posições de pontos, retos e planos

 Um plano no espaço R3 pode ser determinado por qualquer uma das situações:

1.      Três pontos não colineares (não pertencentes à mesma reta).
2.      Um ponto e uma reta ou um segmento de reta que não contém o ponto.
3.      Um ponto e um segmento de reta que não contém o ponto.
4.      Duas retas paralelas que não se sobrepõe.
5.      Dois segmentos de reta paralelos que não se sobrepõe.
6.      Duas retas concorrentes.
7.      Dois segmentos de reta concorrentes.

Posições de retas e planos

 Há duas relações importantes, relacionando uma reta e um plano no espaço R3.
Reta paralela a um plano: Uma reta r é paralela a um plano no espaço R3, se existe uma reta s inteiramente contida no plano que é paralela à reta dada.



Reta perpendicular a um plano: Uma reta é perpendicular a um plano no espaço R3, se ela intersecta o plano em um ponto P e todo segmento de reta contido no plano que tem P como uma de suas extremidades é perpendicular à reta.

Distância de um ponto a um plano

 Seja P um ponto localizado fora de um plano. A distância do ponto ao plano é a medida do segmento de reta perpendicular ao plano em que uma extremidade é o ponto P e a outra extremidade é o ponto que é a interseção entre o plano e o segmento.


Se o ponto P estiver no plano, a distância é nula.

Posições entre planos
1.      Planos concorrentes no espaço R3 são planos cuja interseção é uma reta.
2.      Planos paralelos no espaço R3 são planos que não tem interseção.
3.      Diedro: Quando dois planos são concorrentes, dizemos que tais planos formam um diedro.


4.      Ângulo diedral: É ângulo formado por dois planos concorrentes. Para obter o ângulo diedral, basta tomar o ângulo formado por quaisquer duas retas perpendiculares aos planos concorrentes.

5.      Planos normais são aqueles cujo ângulo diedral é um ângulo reto (90 graus).

quinta-feira, 13 de dezembro de 2012

Probabilidade





Conceitos de probabilidade

A ideia geral da probabilidade é frequentemente dividida em dois conceitos relacionados:

Probabilidade de frequência ou probabilidade aleatória, que representa uma série de eventos futuros cuja ocorrência é definida por alguns fenômenos físicos aleatórios. Este conceito pode ser dividido em fenômenos físicos que são previsíveis através de informação suficiente e fenômenos que são essencialmente imprevisíveis. Um exemplo para o primeiro tipo é uma roleta, e um exemplo para o segundo tipo é um decaimento radioativo.
Probabilidade epistemológica ou probabilidade Bayesiana, que representa nossas incertezas sobre proposições quando não se tem conhecimento completo das circunstâncias causativas. Tais proposições podem ser sobre eventos passados ou futuros, mas não precisam ser. Alguns exemplos de probabilidade epistemológica são designar uma probabilidade à proposição de que uma lei da Física proposta seja verdadeira, e determinar o quão "provável" é que um suspeito cometeu um crime, baseado nas provas apresentadas.
É uma questão aberta se a probabilidade aleatória é redutível à probabilidade epistemológica baseado na nossa inabilidade de predizer com precisão cada força que poderia afetar o rolar de um dado, ou se tais incertezas existem na natureza da própria realidade, particularmente em fenômenos quânticos governados pelo princípio da incerteza de Heisenberg. Embora as mesmas regras matemáticas se apliquem não importando qual interpretação seja escolhida, a escolha tem grandes implicações pelo modo em que a probabilidade é usada para modelar o mundo real.

Representação e interpretação de valores de probabilidade


A probabilidade de um evento geralmente é representada como um número real entre 0 e 1. um evento impossível tem uma probabilidade de exatamente 0, e um evento certo de acontecer tem uma probabilidade de 1, mas a recíproca não é sempre verdadeira: eventos de probabilidade 0 não são sempre impossíveis, nem os de probabilidade 1 certos. A distinção bastante sutil entre "evento certo" e "probabilidade 1" é tratado em maior detalhe no artigo sobre "quase-verdade".
A maior parte das probabilidades que ocorrem na prática são números entre 0 e 1, que indica a posição do evento no contínuo entre impossibilidade e certeza. Quanto mais próxima de 1 seja a probabilidade de um evento, mais provável é que o evento ocorra. Por exemplo, se dois eventos forem ditos igualmente prováveis, como por exemplo em um jogo de cara ou coroa, podemos exprimir a probabilidade de cada evento - cara ou coroa - como "1 em 2", ou, de forma equivalente, "50%", ou ainda "1/2".
Probabilidades também podem ser expressas como chances (odds). Chance é a razão entre a probabilidade de um evento e à probabilidade de todos os demais eventos. A chance de obtermos cara, ao lançarmos uma moeda, é dada por (1/2)/(1 - 1/2), que é igual a 1/1. Isto é expresso como uma "chance de 1 para 1" e é frequentemente escrito como "1:1". Assim, a chance a:b para um certo evento é equivalente à probabilidade a/(a+b).
Por exemplo, a chance 1:1 é equivalente à probabilidade 1/2 e 3:2 é equivalente à probabilidade 3/5.
Ainda fica a questão de a quê exatamente pode ser atribuído uma probabilidade, e como os números atribuídos podem ser usados; isto é uma questão de interpretação de probabilidade.
Há alguns que alegam que pode-se atribuir uma probabilidade a qualquer tipo de proposição lógica incerta; esta é a interpretação bayesiana. Há outros que argumentam que a probabilidade só é aplicada apropriadamente a proposições que relacionam-se com sequências de experimentos repetidos, ou da amostragem de uma população grande; esta é a interpretação frequentista. Há ainda diversas outras interpretações que são variações de um ou de outro tipo.


Distribuições


A distribuição probabilidade é uma função que determina probabilidades para eventos ou proposições. Para qualquer conjunto de eventos ou proposições existem muitas maneiras de determinar probabilidades, de forma que a escolha de uma ou outra distribuição é equivalente a criar diferentes hipóteses sobre os eventos ou proposições em questão.
Há várias formas equivalentes de se especificar uma distribuição de probabilidade. Talvez a mais comum é especificar uma  função densidade da probabilidade. Daí, a probabilidade de um evento ou proposição é obtida pela integração da função densidade.
A função distribuição pode ser também especificada diretamente. Em uma dimensão, a função distribuição é chamada de função distribuição cumulativa. As distribuições de probabilidade também podem ser especificadas via momentos ou por funções características, ou por outras formas.
Uma distribuição é chamada de distribuição discreta se for definida em um conjunto contável e discreto, tal como o subconjunto dos números inteiros; ou é chamada de distribuição contínua se tiver uma função distribuição contínua, tal como uma função polinomial ou exponencial. A maior parte das distribuições de importância prática são ou discretas ou contínuas, porém há exemplos de distribuições que não são de nenhum desses tipos.
Dentre as distribuições discretas importantes, pode-se citar a  distribuição uniforme discreta, a distribuição de Poisson, a distribuição binomial, a distribuição binomial negativa e a distribuição de Maxwell-Boltzmann. Dentre as distribuições contínuas, a distribuição normal, a distribuição gama, a distribuição t de Student e a distribuição exponencial.



Análise Combinatória



 Análise Combinatória é um conjunto de procedimentos que possibilita a construção de grupos diferentes formados por um número finito de elementos de um conjunto sob certas circunstâncias.Na maior parte das vezes, tomaremos conjuntos Z com m elementos e os grupos formados com elementos de Z terão p elementos, isto é, p será a taxa do agrupamento, com p<m.Arranjos, Permutações ou Combinações, são os três tipos principais de agrupamentos, sendo que eles podem ser simples, com repetição ou circulares. Apresentaremos alguns detalhes de tais agrupamentos.Observação: É comum encontrarmos na literatura termos como: arranjar, combinar ou permutar, mas todo o cuidado é pouco com os mesmos, que às vezes são utilizados em concursos em uma forma dúbia!


Arranjo


São agrupamentos formados com p elementos, (p<m) de forma que os p elementos sejam distintos entre sí pela ordem ou pela espécie. Os arranjos podem ser simples ou com repetição.

Arranjo simples: Não ocorre a repetição de qualquer elemento em cada grupo de p elementos.
Fórmula: As(m,p) = m!/(m-p)!
Cálculo para o exemplo: As(4,2) = 4!/2!=24/2=12.
Exemplo: Seja Z={A,B,C,D}, m=4 e p=2. Os arranjos simples desses 4 elementos tomados 2 a 2 são 12 grupos que não podem ter a repetição de qualquer elemento mas que podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:
As={AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC}

Arranjo com repetição: Todos os elementos podem aparecer repetidos em cada grupo de p elementos.
Fórmula: Ar(m,p) = mp.
Cálculo para o exemplo: Ar(4,2) = 42=16.
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. Os arranjos com repetição desses 4 elementos tomados 2 a 2 são 16 grupos que onde aparecem elementos repetidos em cada grupo. Todos os agrupamentos estão no conjunto:
Ar={AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}

Arranjo condicional: Todos os elementos aparecem em cada grupo de p elementos, mas existe uma condição que deve ser satisfeita acerca de alguns elementos.
Fórmula: N=A(m1,p1).A(m-m1,p-p1)
Cálculo para o exemplo: N=A(3,2).A(7-3,4-2)=A(3,2).A(4,2)=6×12=72.
Exemplo: Quantos arranjos com 4 elementos do conjunto {A,B,C,D,E,F,G}, começam com duas letras escolhidas no subconjunto {A,B,C}?
Aqui temos um total de m=7 letras, a taxa é p=4, o subconjunto escolhido tem m1=3 elementos e a taxa que este subconjunto será formado é p1=2. Com as letras A,B e C, tomadas 2 a 2, temos 6 grupos que estão no conjunto:

PABC = {AB,BA,AC,CA,BC,CB}

Com as letras D,E,F e G tomadas 2 a 2, temos 12 grupos que estão no conjunto:
PDEFG = {DE,DF,DG,ED,EF,EG,FD,FE,FG,GD,GE,GF}

Usando a regra do produto, teremos 72 possibilidades obtidas pela junção de um elemento do conjunto PABC com um elemento do conjunto PDEFG. Um típico arranjo para esta situação é CAFG.

Permutação

Quando formamos agrupamentos com p elementos, (p<m) de forma que os p elementos sejam distintos entre sí apenas pela espécie.

Combinação simples: Não ocorre a repetição de qualquer elemento em cada grupo de p elementos.
Fórmula: C(m,p) = m!/[(m-p)! p!]
Cálculo para o exemplo: C(4,2)=4!/[2!2!]=24/4=6
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. As combinações simples desses 4 elementos tomados 2 a 2 são 6 grupos que não podem ter a repetição de qualquer elemento nem podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:
Cs={AB,AC,AD,BC,BD,CD}

Combinação com repetição: Todos os elementos podem aparecer repetidos em cada grupo até p vezes.
Fórmula: Cr(m,p)=C(m+p-1,p)
Cálculo para o exemplo: Cr(4,2)=C(4+2-1,2)=C(5,2)=5!/[2!3!]=10
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. As combinações com repetição desses 4 elementos tomados 2 a 2 são 10 grupos que têm todas as repetições possíveis de elementos em grupos de 2 elementos não podendo aparecer o mesmo grupo com a ordem trocada. De um modo geral neste caso, todos os agrupamentos com 2 elementos formam um conjunto com 16 elementos:
Cr={AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}

mas para obter as combinações com repetição, deveremos excluir deste conjunto os 6 grupos que já apareceram antes, pois AB=BA, AC=CA, AD=DA, BC=CB, BD=DB e CD=DC, assim as combinações com repetição dos elementos de C tomados 2 a 2, são:
Cr={AA,AB,AC,AD,BB,BC,BD,CC,CD,DD}



Regras gerais sobre a Análise Combinatória 

Problemas de Análise Combinatória normalmente são muito difíceis mas eles podem ser resolvidos através de duas regras básicas: a regra da soma e a regra do produto.

Regra da soma: A regra da soma nos diz que se um elemento pode ser escolhido de m formas e um outro elemento pode ser escolhido de n formas, então a escolha de um ou outro elemento se realizará de m+n formas, desde que tais escolhas sejam independentes, isto é, nenhuma das escolhas de um elemento pode coincidir com uma escolha do outro.

Regra do Produto: A regra do produto diz que se um elemento H pode ser escolhido de m formas diferentes e se depois de cada uma dessas escolhas, um outro elemento M pode ser escolhido de n formas diferentes, a escolha do par (H,M) nesta ordem poderá ser realizada de m.n formas.

Exemplo: Consideremos duas retas paralelas ou concorrentes sem que os pontos sob análise estejam em ambas, sendo que a primeira r contem m pontos distintos marcados por r1, r2, r3, ..., rm e a segunda s contem n outros pontos distintos marcados por s1, s2, s3, ..., sn. De quantas maneiras podemos traçar segmentos de retas com uma extremidade numa reta e a outra extremidade na outra reta?

É fácil ver isto ligando r1 a todos os pontos de s e assim teremos n segmentos, depois ligando r2 a todos os pontos de s e assim teremos n segmentos, e continuamos até o último ponto para obter também n segmentos. Como existem m pontos em r e n pontos em s, teremos m.n segmentos possíveis.